Verkauf durch Sack Fachmedien

Ahn / Chen / Moore

Iterative Learning Control

Robustness and Monotonic Convergence for Interval Systems

Medium: Buch
ISBN: 978-1-84628-846-3
Verlag: Springer
Erscheinungstermin: 26.06.2007
Lieferfrist: bis zu 10 Tage

This monograph studies the design of robust, monotonically convergent iterative learning controllers (ILC) for discrete-time systems. It takes account of the recently developed comprehensive approach to robust ILC analysis and design established to handle the situation where the plant model is uncertain. Considering ILC in the iteration domain, it presents a unified analysis and design framework that enables designers to consider both robustness and monotonic convergence for typical uncertainty models, including parametric interval uncertainties, iteration-domain frequency uncertainty, and iteration-domain stochastic uncertainty. It presents solutions to three fundamental robust interval computational problems (used as basic tools for designing robust ILC controllers): finding the maximum singular value of an interval matrix, determining the robust stability of interval polynomial matrix, and obtaining the power of an interval matrix.


Produkteigenschaften


  • Artikelnummer: 9781846288463
  • Medium: Buch
  • ISBN: 978-1-84628-846-3
  • Verlag: Springer
  • Erscheinungstermin: 26.06.2007
  • Sprache(n): Englisch
  • Auflage: 2007
  • Serie: Communications and Control Engineering
  • Produktform: Gebunden
  • Gewicht: 593 g
  • Seiten: 230
  • Format (B x H x T): 160 x 241 x 21 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Autoren

Iterative Learning Control Overview.- An Overview of the ILC Literature.- The Super-vector Approach.- Robust Interval Iterative Learning Control.- Robust Interval Iterative Learning Control: Analysis.- Schur Stability Radius of Interval Iterative Learning Control.- Iterative Learning Control Design Based on Interval Model Conversion.- Iteration-domain Robustness.- Robust Iterative Learning Control: H? Approach.- Robust Iterative Learning Control: Stochastic Approaches.- Conclusions.