Verkauf durch Sack Fachmedien

Alsuhli / Sakellariou / Stouraitis

Number Systems for Deep Neural Network Architectures

Medium: Buch
ISBN: 978-3-031-38132-4
Verlag: Springer Nature Switzerland
Erscheinungstermin: 02.09.2023
Lieferfrist: bis zu 10 Tage

This book provides readers a comprehensive introduction to alternative number systems for more efficient representations of Deep Neural Network (DNN) data. Various number systems (conventional/unconventional) exploited for DNNs are discussed, including Floating Point (FP), Fixed Point (FXP), Logarithmic Number System (LNS), Residue Number System (RNS), Block Floating Point Number System (BFP), Dynamic Fixed-Point Number System (DFXP) and Posit Number System (PNS). The authors explore the impact of these number systems on the performance and hardware design of DNNs, highlighting the challenges associated with each number system and various solutions that are proposed for addressing them.


Produkteigenschaften


  • Artikelnummer: 9783031381324
  • Medium: Buch
  • ISBN: 978-3-031-38132-4
  • Verlag: Springer Nature Switzerland
  • Erscheinungstermin: 02.09.2023
  • Sprache(n): Englisch
  • Auflage: 2024
  • Serie: Synthesis Lectures on Engineering, Science, and Technology
  • Produktform: Gebunden
  • Gewicht: 372 g
  • Seiten: 94
  • Format (B x H x T): 173 x 246 x 12 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Autoren

Introduction.- Conventional number systems.- DNN architectures based on Logarithmic Number System (LNS).- DNN architectures based on Residue Number System (RNS).- DNN architectures based on Block Floating Point (BFP) number system.- DNN architectures based on Dynamic Fixed Point (DFXP) number system.- DNN architectures based on Posit number system.