Verkauf durch Sack Fachmedien

Annema

Feed-Forward Neural Networks

Vector Decomposition Analysis, Modelling and Analog Implementation

Medium: Buch
ISBN: 978-0-7923-9567-6
Verlag: Springer US
Erscheinungstermin: 31.05.1995
Lieferfrist: bis zu 10 Tage

presents a novel method for the mathematical analysis of neural networks that learn according to the back-propagation algorithm. The book also discusses some other recent alternative algorithms for hardware implemented perception-like neural networks. The method permits a simple analysis of the learning behaviour of neural networks, allowing specifications for their building blocks to be readily obtained.
Starting with the derivation of a specification and ending with its hardware implementation, analog hard-wired, feed-forward neural networks with on-chip back-propagation learning are designed in their entirety. On-chip learning is necessary in circumstances where fixed weight configurations cannot be used. It is also useful for the elimination of most mis-matches and parameter tolerances that occur in hard-wired neural network chips.
Fully analog neural networks have several advantages over other implementations: low chip area, low power consumption, and high speed operation.
is an excellent source of reference and may be used as a text for advanced courses.


Produkteigenschaften


  • Artikelnummer: 9780792395676
  • Medium: Buch
  • ISBN: 978-0-7923-9567-6
  • Verlag: Springer US
  • Erscheinungstermin: 31.05.1995
  • Sprache(n): Englisch
  • Auflage: 1995
  • Serie: The Springer International Series in Engineering and Computer Science
  • Produktform: Gebunden
  • Gewicht: 1190 g
  • Seiten: 238
  • Format (B x H x T): 160 x 241 x 19 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Autoren

1 Introduction.- 2 The Vector Decomposition Method.- 3 Dynamics of Single Layer Nets.- 4 Unipolar Input Signals in Single-Layer Feed-Forward Neural Networks.- 5 Cross-talk in Single-Layer Feed-Forward Neural Networks.- 6 Precision Requirements for Analog Weight Adaptation Circuitry for Single-Layer Nets.- 7 Discretization of Weight Adaptations in Single-Layer Nets.- 8 Learning Behavior and Temporary Minima of Two-Layer Neural Networks.- 9 Biases and Unipolar Input signals for Two-Layer Neural Networks.- 10 Cost Functions for Two-Layer Neural Networks.- 11 Some issues for f’ (x).- 12 Feed-forward hardware.- 13 Analog weight adaptation hardware.- 14 Conclusions.- Nomenclature.