Verkauf durch Sack Fachmedien

Ben N'Cir / Nasraoui

Clustering Methods for Big Data Analytics

Techniques, Toolboxes and Applications

Medium: Buch
ISBN: 978-3-319-97863-5
Verlag: Springer International Publishing
Erscheinungstermin: 08.11.2018
Lieferfrist: bis zu 10 Tage

This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation.



Produkteigenschaften


  • Artikelnummer: 9783319978635
  • Medium: Buch
  • ISBN: 978-3-319-97863-5
  • Verlag: Springer International Publishing
  • Erscheinungstermin: 08.11.2018
  • Sprache(n): Englisch
  • Auflage: 1. Auflage 2019
  • Serie: Unsupervised and Semi-Supervised Learning
  • Produktform: Gebunden
  • Gewicht: 471 g
  • Seiten: 187
  • Format (B x H x T): 160 x 241 x 17 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Herausgeber

Introduction.- Clustering large scale data.- Clustering heterogeneous data.- Distributed clustering methods.- Clustering structured and unstructured data.- Clustering and unsupervised learning for deep learning.- Deep learning methods for clustering.- Clustering high speed cloud, grid, and streaming data.- Extension of partitioning, model based, density based, grid based, fuzzy and evolutionary clustering methods for big data analysis.- Large documents and textual data clustering.- Applications of big data clustering methods.- Clustering multimedia and multi-structured data.- Large-scale recommendation systems and social media systems.- Clustering multimedia and multi-structured data.- Real life applications of big data clustering.- Validation measures for big data clustering methods.- Conclusion.