This book addresses the linear and nonlinear two-phase stability of the one-dimensional Two-Fluid Model (TFM) material waves and the numerical methods used to solve it. The TFM fluid dynamic stability is a problem that remains open since its inception more than forty years ago. The difficulty is formidable because it involves the combined challenges of two-phase topological structure and turbulence, both nonlinear phenomena. The one dimensional approach permits the separation of the former from the latter.The authors first analyze the kinematic and Kelvin-Helmholtz instabilities with the simplified one-dimensional Fixed-Flux Model (FFM). They then analyze the density wave instability with the well-known Drift-Flux Model. They demonstrate that the Fixed-Flux and Drift-Flux assumptions are two complementary TFM simplifications that address two-phase local and global linear instabilities separately. Furthermore, they demonstrate with a well-posed FFM and a DFM two cases ofnonlinear two-phase behavior that are chaotic and Lyapunov stable. On the practical side, they also assess the regularization of an ill-posed one-dimensional TFM industrial code. Furthermore, the one-dimensional stability analyses are applied to obtain well-posed CFD TFMs that are either stable (RANS) or Lyapunov stable (URANS), with the focus on numerical convergence.
Produkteigenschaften
- Artikelnummer: 9783319831749
- Medium: Buch
- ISBN: 978-3-319-83174-9
- Verlag: Springer International Publishing
- Erscheinungstermin: 22.04.2018
- Sprache(n): Englisch
- Auflage: Softcover Nachdruck of the original 1. Auflage 2017
- Produktform: Kartoniert, Previously published in hardcover
- Gewicht: 5737 g
- Seiten: 358
- Format (B x H x T): 155 x 235 x 21 mm
- Ausgabetyp: Kein, Unbekannt
Themen
- Technische Wissenschaften
- Maschinenbau | Werkstoffkunde
- Technische Mechanik | Werkstoffkunde
- Technische Thermodynamik
- Technische Wissenschaften
- Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie
- Verfahrenstechnik, Chemieingenieurwesen
- Technische Wissenschaften
- Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie
- Verfahrenstechnik, Chemieingenieurwesen
- Technische Wissenschaften
- Maschinenbau | Werkstoffkunde
- Technische Mechanik | Werkstoffkunde
- Strömungslehre
- Technische Wissenschaften
- Maschinenbau | Werkstoffkunde
- Technische Mechanik | Werkstoffkunde
- Technische Thermodynamik