Preface.- R. Abdesselam: A Topological Clustering of Individuals.- C. Anton and I. Smith: Model Based Clustering of Functional Data with Mild Outliers.- F. Antonazzo and S. Ingrassia: A Trivariate Geometric Classification of Decision Boundaries for Mixtures of Regressions.- E. Arnone, E. Cunial, and L. M. Sangalli: Generalized Spatio-temporal Regression with PDE Penalization.- R. Ascari and S. Migliorati: A New Regression Model for the Analysis of Microbiome Data.- R. Aschenbruck, G. Szepannek, and A. F. X. Wilhelm: Stability of Mixed-type Cluster Partitions for Determination of the Number of Clusters.- A. Ashofteh and P. Campos: A Review on Official Survey Item Classification for Mixed-Mode Effects Adjustment.- V. Batagelj: Clustering and Blockmodeling Temporal Networks – Two Indirect Approaches.- R. Boutalbi, L. Labiod, and M. Nadif: Latent Block Regression Model.- N. Chabane, M. Achraf Bouaoune, R. Amir Sofiane Tighilt, B. Mazoure, N. Tahiri, and V. Makarenkov: Using Clustering and Machine Learning Methods to Provide Intelligent Grocery Shopping Recommendations.- T. Chadjipadelis and S. Magopoulou: COVID-19 Pandemic: a Methodological Model for the Analysis of Government’s Preventing Measures and Health Data Records.- J. Champagne Gareau, É. Beaudry, and V. Makarenkov: pcTVI: Parallel MDP Solver Using a Decomposition into Independent Chains.- C. Di Nuzzo and S. Ingrassia: Three-way Spectral Clustering.- J. Dobša and H. A. L. Kiers: Improving Classification of Documents by Semi-supervised Clustering in a Semantic Space.- J. Gama: Trends in Data Stream Mining.- L. A. García-Escudero, A. Mayo-Iscar, G. Morelli, and M. Riani: Old and New Constraints in Model Based Clustering.- V. G Genova, G. Giordano, G . Ragozini, and M. Prosperina Vitale: Clustering Student Mobility Data in 3-way Networks.- R. Giubilei: Clustering Brain Connectomes Through a Density-peak Approach.- T. Górecki, M. Šuczak, and P. Piasecki: Similarity Forest for Time Series Classification.- K. Hayashi, E. Hoshino, M. Suzuki, E. Nakanishi, K. Sakai, and M. Obatake: Detection of the Biliary Atresia Using Deep Convolutional Neural Networks Based on Statistical Learning Weights via Optimal Similarity and Resampling Methods.- Ch. Hennig: Some Issues in Robust Clustering.- J. Kalina and P. Janá£ek: Robustness Aspects of Optimized Centroids.- L. Labiod and M. Nadif: Data Clustering and Representation Learning Based on Networked Data.- Lazhar Labiod and Mohamed Nadif: Towards a Bi-stochastic Matrix Approximation of k-means and Some Variants.- A. LaLonde, T. Love, D. R. Young, and T. Wu: Clustering Adolescent Female Physical Activity Levels with an Infinite Mixture Model on Random Effects.- Á. López-Oriona, J. A. Vilar, and P. D’Urso: Unsupervised Classification of Categorical Time Series Through Innovative Distances.- D. Masís, E. Segura, J. Trejos, and A. Xavier: Fuzzy Clustering by Hyperbolic Smoothing.- R. Meng, H. K. H. Lee, and K. Bouchard: Stochastic Collapsed Variational Inference for Structured Gaussian Process Regression Networks.- H. Duy Nguyen, F. Forbes, G. Fort, and O. Cappé: An Online Minorization-Maximization Algorithm.- L. Palazzo and R. Ievoli: Detecting Differences in Italian Regional Health Services During Two Covid-19 Waves.- G. Panagiotidou and T. Chadjipadelis: Political and Religion Attitudes in Greece: Behavioral Discourses.- K. Pawlasová, I. Karafiátová, and J. Dvorák: Supervised Classification via Neural Networks for Replicated Point Patterns.- G. Perrone and G. Soffritti: Parsimonious Mixtures of Seemingly Unrelated Contaminated Normal Regression Models.- N. Pronello, R. Ignaccolo, L. Ippoliti, and S. Fontanella: Penalized Model-based Functional Clustering: a Regularization Approach via Shrinkage Methods.- D. Rodrigues, L. P. Reis, and B. M. Faria: Emotion Classification Based on Single Electrode Brain Data: Applications for Assistive Technology.- R. Scimone, A. Menafoglio, L. M. Sangalli, and P. Secchi: The Death Process in Italy Before and During the Covid-19 Pandemic: a Functional Compositional Approach.- O. Silva, Á. Sousa, and H. Bacelar-Nicolau: Clustering Validation in the Context of Hierarchical Cluster Analysis: an Empirical Study.- C. Silvestre, M. G. M. S. Cardoso, and M. Figueiredo: An MML Embedded Approach for Estimating the Number of Clusters.- Á. Sousa, O. Silva, M. Graça Batista, S. Cabral, and H. Bacelar-Nicolau: Typology of Motivation Factors for Employees in the Banking Sector: An Empirical Study Using Multivariate Data Analysis Methods.- J. Michael Spoor, J. Weber, and J. Ovtcharova: A Proposal for Formalization and Definition of Anomalies in Dynamical Systems.- N. Tahiri and A. Koshkarov: New Metrics for Classifying Phylogenetic Trees Using -means and the Symmetric Difference Metric.- S. D. Tomarchio: On Parsimonious Modelling via Matrix-variate t Mixtures.- G. Zammarchi, M. Romano, and C. Conversano: Evolution of Media Coverage on Climate Change and Environmental Awareness: an Analysisof Tweets from UK and US Newspapers.