Verkauf durch Sack Fachmedien

Durrett / Bramson

Perplexing Problems in Probability

Festschrift in Honor of Harry Kesten

Medium: Buch
ISBN: 978-1-4612-7442-1
Verlag: Birkhäuser Boston
Erscheinungstermin: 08.10.2011
Lieferfrist: bis zu 10 Tage

Springer Book Archives


Produkteigenschaften


  • Artikelnummer: 9781461274421
  • Medium: Buch
  • ISBN: 978-1-4612-7442-1
  • Verlag: Birkhäuser Boston
  • Erscheinungstermin: 08.10.2011
  • Sprache(n): Englisch
  • Auflage: Softcover Nachdruck of the original 1. Auflage 1999
  • Serie: Progress in Probability
  • Produktform: Kartoniert
  • Gewicht: 622 g
  • Seiten: 398
  • Format (B x H x T): 155 x 235 x 23 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Herausgeber

1 Harry Kesten’s Publications: A Personal Perspective.- 2 Lattice Trees, Percolation and Super-Brownian Motion.- 3 Percolation in ? + 1 Dimensions at the Uniqueness Threshold.- 4 Percolation on Transitive Graphs as a Coalescent Process: Relentless Merging Followed by Simultaneous Uniqueness.- 5 Inequalities and Entanglements for Percolation and Random-Cluster Models.- 6 From Greedy Lattice Animals to Euclidean First-Passage Percolation.- 7 Reverse Shapes in First-Passage Percolation and Related Growth Models.- 8 Double Behavior of Critical First-Passage Percolation.- 9 The van den Berg-Kesten-Reimer Inequality: A Review.- 10 Large Scale Degrees and the Number of Spanning Clusters for the Uniform Spanning Tree.- 11 On the Absence of Phase Transition in the Monomer-Dimer Model.- 12 Loop-Erased Random Walk.- 13 Dominance of the Sum over the Maximum and Some New Classes of Stochastic Compactness.- 14 Stability and Heavy Traffic Limits for Queueing Networks.- 15 Rescaled Particle Systems Converging to Super-Brownian Motion.- 16 The Hausdorff Measure of the Range of Super-Brownian Motion.- 17 Branching Random Walks on Finite Trees.- 18 Toom’s Stability Theorem in Continuous Time.- 19 The Role of Explicit Space in Plant Competition Models.- 20 Large Deviations for Interacting Particle Systems.- 21 The Gibbs Conditioning Principle for Markov Chains.