In many areas in engineering, economics and science new developments are only possible by the application of modern optimization methods. Theoptimizationproblemsarisingnowadaysinapplicationsaremostly multiobjective, i.e. many competing objectives are aspired all at once. These optimization problems with a vector-valued objective function have in opposition to scalar-valued problems generally not only one minimal solution but the solution set is very large. Thus the devel- ment of e?cient numerical methods for special classes of multiobj- tive optimization problems is, due to the complexity of the solution set, of special interest. This relevance is pointed out in many recent publications in application areas such as medicine ([63, 118, 100, 143]), engineering([112,126,133,211,224],referencesin[81]),environmental decision making ([137, 227]) or economics ([57, 65, 217, 234]). Consideringmultiobjectiveoptimizationproblemsdemands?rstthe de?nition of minimality for such problems. A ?rst minimality notion traces back to Edgeworth [59], 1881, and Pareto [180], 1896, using the naturalorderingintheimagespace.A?rstmathematicalconsideration ofthistopicwasdonebyKuhnandTucker[144]in1951.Sincethattime multiobjective optimization became an active research ?eld. Several books and survey papers have been published giving introductions to this topic, for instance [28, 60, 66, 76, 112, 124, 165, 188, 189, 190, 215]. Inthelastdecadesthemainfocuswasonthedevelopmentofinteractive methods for determining one single solution in an iterative process.
Produkteigenschaften
- Artikelnummer: 9783642098048
- Medium: Buch
- ISBN: 978-3-642-09804-8
- Verlag: Springer
- Erscheinungstermin: 08.10.2010
- Sprache(n): Englisch
- Auflage: Softcover Nachdruck of hardcover 1. Auflage 2008
- Serie: Vector Optimization
- Produktform: Kartoniert, Previously published in hardcover
- Gewicht: 394 g
- Seiten: 241
- Format (B x H x T): 155 x 235 x 15 mm
- Ausgabetyp: Kein, Unbekannt
Themen
- Mathematik | Informatik
- Mathematik
- Numerik und Wissenschaftliches Rechnen
- Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik
- Mathematik
- Numerik und Wissenschaftliches Rechnen
- Computeranwendungen in der Mathematik
- Interdisziplinäres
- Wissenschaften
- Wissenschaften: Forschung und Information
- Entscheidungstheorie, Sozialwahltheorie
- Mathematik | Informatik
- Mathematik
- Numerik und Wissenschaftliches Rechnen
- Computeranwendungen in der Mathematik