The book contains a systematic treatment of the qualitative theory of elliptic boundary value problems for linear and quasilinear second order equations in non-smooth domains. The authors concentrate on the following fundamental results: sharp estimates for strong and weak solutions, solvability of the boundary value problems, regularity assertions for solutions near singular points.
Key features:
* New the Hardy - Friedrichs - Wirtinger type inequalities as well as new integral inequalities related to the Cauchy problem for a differential equation.* Precise exponents of the solution decreasing rate near boundary singular points and best possible conditions for this.* The question about the influence of the coefficients smoothness on the regularity of solutions.* New existence theorems for the Dirichlet problem for linear and quasilinear equations in domains with conical points.* The precise power modulus of continuity at singular boundary point for solutions of the Dirichlet, mixed and the Robin problems.* The behaviour of weak solutions near conical point for the Dirichlet problem for m - Laplacian.* The behaviour of weak solutions near a boundary edge for the Dirichlet and mixed problem for elliptic quasilinear equations with triple degeneration.
Produkteigenschaften
- Artikelnummer: 9780444521095
- Medium: Buch
- ISBN: 978-0-444-52109-5
- Verlag: ELSEVIER
- Erscheinungstermin: 12.01.2006
- Sprache(n): Englisch
- Auflage: Erscheinungsjahr 2006
- Serie: North-Holland Mathematical Lib
- Produktform: Gebunden
- Gewicht: 939 g
- Seiten: 538
- Format (B x H x T): 154 x 232 x 29 mm
- Ausgabetyp: Kein, Unbekannt