Smoothness Priors Analysis of Time Series addresses some of the problems of modeling stationary and nonstationary time series primarily from a Bayesian stochastic regression "smoothness priors" state space point of view. Prior distributions on model coefficients are parametrized by hyperparameters. Maximizing the likelihood of a small number of hyperparameters permits the robust modeling of a time series with relatively complex structure and a very large number of implicitly inferred parameters. The critical statistical ideas in smoothness priors are the likelihood of the Bayesian model and the use of likelihood as a measure of the goodness of fit of the model. The emphasis is on a general state space approach in which the recursive conditional distributions for prediction, filtering, and smoothing are realized using a variety of nonstandard methods including numerical integration, a Gaussian mixture distribution-two filter smoothing formula, and a Monte Carlo "particle-path tracing" method in which the distributions are approximated by many realizations. The methods are applicable for modeling time series with complex structures.
Produkteigenschaften
- Artikelnummer: 9780387948195
- Medium: Buch
- ISBN: 978-0-387-94819-5
- Verlag: Springer
- Erscheinungstermin: 09.08.1996
- Sprache(n): Englisch
- Auflage: 1996
- Serie: Lecture Notes in Statistics
- Produktform: Kartoniert
- Gewicht: 423 g
- Seiten: 280
- Format (B x H x T): 155 x 235 x 16 mm
- Ausgabetyp: Kein, Unbekannt
Themen
- Interdisziplinäres
- Wissenschaften
- Wissenschaften: Forschung und Information
- Datenanalyse, Datenverarbeitung
- Interdisziplinäres
- Wissenschaften
- Wissenschaften: Forschung und Information
- Datenanalyse, Datenverarbeitung
- Mathematik | Informatik
- Mathematik
- Mathematische Analysis
- Elementare Analysis und Allgemeine Begriffe