Verkauf durch Sack Fachmedien

Ghanbarnejad / Saha Roy / Mitra

Dynamics On and Of Complex Networks III

Machine Learning and Statistical Physics Approaches

Medium: Buch
ISBN: 978-3-030-14685-6
Verlag: Springer International Publishing
Erscheinungstermin: 14.08.2020
Lieferfrist: bis zu 10 Tage

This book bridges the gap between advances in the communities of computer science and physics--namely machine learning and statistical physics. It contains diverse but relevant topics in statistical physics, complex systems, network theory, and machine learning. Examples of such topics are: predicting missing links, higher-order generative modeling of networks, inferring network structure by tracking the evolution and dynamics of digital traces, recommender systems, and diffusion processes.
The book contains extended versions of high-quality submissions received at the workshop, Dynamics On and Of Complex Networks (doocn.org), together with new invited contributions. The chapters will benefit a diverse community of researchers. The book is suitable for graduate students, postdoctoral researchers and professors of various disciplines including sociology, physics, mathematics, and computer science.


Produkteigenschaften


  • Artikelnummer: 9783030146856
  • Medium: Buch
  • ISBN: 978-3-030-14685-6
  • Verlag: Springer International Publishing
  • Erscheinungstermin: 14.08.2020
  • Sprache(n): Englisch
  • Auflage: 1. Auflage 2019
  • Serie: Springer Proceedings in Complexity
  • Produktform: Kartoniert
  • Gewicht: 394 g
  • Seiten: 244
  • Format (B x H x T): 155 x 235 x 15 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Herausgeber

Part1. Network Structure.- Chapter1. An Empirical Study of the Effect of Noise Models on Centrality Metrics.- Chapter2. Emergence and Evolution of Hierarchical Structure in Complex Systems.- Chapter3. Evaluation of Cascading Infrastructure Failures and Optimal Recovery from a Network Science Perspective.- Part2. Network Dynamics.- Chapter4. Automatic Discovery of Families of Network Generative Processes.- Chapter5. Modeling User Dynamics in Collaboration Websites.- Chapter6. The Problem of Interaction Prediction in Link Streams.- Chapter7. The Network Source Location Problem in the Context of Foodborne Disease Outbreaks.- Part3. Theoretical Models and applications.- Chapter8.  Network Representation Learning using Local Sharing and Distributed Graph Factorization (LSDGF).- Chapter9. The  Anatomy  of  Reddit:  An  Overview  of Academic  Research.- Chapter10. Learning Information Dynamics in Social Media: A Temporal Point Process Perspective.