Verkauf durch Sack Fachmedien

Horedt

Polytropes

Applications in Astrophysics and Related Fields

Medium: Buch
ISBN: 978-1-4020-2350-7
Verlag: Springer
Erscheinungstermin: 28.07.2004
Kurzfristig nicht lieferbar, wird unverzüglich nach Lieferbarkeit versandt.

While it seems possible to present a fairly complete uni?ed theory of undistorted polytropes, as attempted in the previous chapter, the theory of distorted polytropes is much more extended and - phisticated, so that I present merely a brief overview of the theories that seem to me most interesting and important. Basically, the methods proposed to study the hydrostatic equilibrium of a distorted self-gravitating mass can be divided into two major groups (Blinnikov 1975): (i) Analytic or semia- lytic methods using a small parameter connected with the distortion of the polytrope. (ii) More or less accurate numerical methods. Lyapunov and later Carleman (see Jardetzky 1958, p. 13) have demonstrated that a sphere is a unique solution to the problem of hydrostatic equilibrium for a ?uid mass at rest in tridimensional space. The problem complicates enormously if the sphere is rotating rigidly or di?erentially in space round an axis, and/or if it is distorted magnetically or tidally. Even for the simplest case of a uniformly rotating ?uid body with constant density not all possible solutions have been found (Zharkov and Trubitsyn 1978, p. 222). The sphere becomes an oblate ?gure, and we have no a priori knowledge of its strati?cation, boundary shape, planes of symmetry, transfer of angular momentum in di?erentially rotating bodies, etc.


Produkteigenschaften


  • Artikelnummer: 9781402023507
  • Medium: Buch
  • ISBN: 978-1-4020-2350-7
  • Verlag: Springer
  • Erscheinungstermin: 28.07.2004
  • Sprache(n): Englisch
  • Auflage: 2004. Auflage 2004
  • Serie: Astrophysics and Space Science Library
  • Produktform: Gebunden
  • Gewicht: 1239 g
  • Seiten: 724
  • Format (B x H x T): 162 x 241 x 48 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Autoren

Polytropic and Adiabatic Processes.- Undistorted Polytropes.- Distorted Polytropes.- Relativistic Polytropes.- Stability and Oscillations.- Further Applications to Polytropes.