Verkauf durch Sack Fachmedien

James

Deep Learning Classifiers with Memristive Networks

Theory and Applications

Medium: Buch
ISBN: 978-3-030-14522-4
Verlag: Springer International Publishing
Erscheinungstermin: 17.04.2019
Lieferfrist: bis zu 10 Tage

This book introduces readers to the fundamentals of deep neural network architectures, with a special emphasis on memristor circuits and systems. At first, the book offers an overview of neuro-memristive systems, including memristor devices, models, and theory, as well as an introduction to deep learning neural networks such as multi-layer networks, convolution neural networks, hierarchical temporal memory, and long short term memories, and deep neuro-fuzzy networks. It then focuses on the design of these neural networks using memristor crossbar architectures in detail. The book integrates the theory with various applications of neuro-memristive circuits and systems. It provides an introductory tutorial on a range of issues in the design, evaluation techniques, and implementations of different deep neural network architectures with memristors.


Produkteigenschaften


  • Artikelnummer: 9783030145224
  • Medium: Buch
  • ISBN: 978-3-030-14522-4
  • Verlag: Springer International Publishing
  • Erscheinungstermin: 17.04.2019
  • Sprache(n): Englisch
  • Auflage: 1. Auflage 2020
  • Serie: Modeling and Optimization in Science and Technologies
  • Produktform: Gebunden
  • Gewicht: 512 g
  • Seiten: 213
  • Format (B x H x T): 160 x 241 x 18 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Herausgeber

Available in MS