Verkauf durch Sack Fachmedien

Jiang / Zhang / Cui

Distributed Machine Learning and Gradient Optimization

Medium: Buch
ISBN: 978-981-16-3419-2
Verlag: Springer Nature Singapore
Erscheinungstermin: 24.02.2022
Lieferfrist: bis zu 10 Tage

This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol.

Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appealto a broad audience in the field of machine learning, artificial intelligence, big data and database management.



Produkteigenschaften


  • Artikelnummer: 9789811634192
  • Medium: Buch
  • ISBN: 978-981-16-3419-2
  • Verlag: Springer Nature Singapore
  • Erscheinungstermin: 24.02.2022
  • Sprache(n): Englisch
  • Auflage: 1. Auflage 2022
  • Serie: Big Data Management
  • Produktform: Gebunden
  • Gewicht: 448 g
  • Seiten: 169
  • Format (B x H x T): 160 x 241 x 16 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Autoren

1 Introduction.- 2 Basics of Distributed Machine Learning.- 3 Distributed Gradient Optimization Algorithms.- 4 Distributed Machine Learning Systems.- 5 Conclusion.