Verkauf durch Sack Fachmedien

Johnson-Leung / Schmidt / Roberts

Stable Klingen Vectors and Paramodular Newforms

Medium: Buch
ISBN: 978-3-031-45176-8
Verlag: Springer Nature Switzerland
Erscheinungstermin: 27.12.2023
Lieferfrist: bis zu 10 Tage

This book describes a novel approach to the study of Siegel modular forms of degree two with paramodular level. It introduces the family of stable Klingen congruence subgroups of GSp(4) and uses this family to obtain new relations between the Hecke eigenvalues and Fourier coefficients of paramodular newforms, revealing a fundamental dichotomy for paramodular representations. Among other important results, it includes a complete description of the vectors fixed by these congruence subgroups in all irreducible representations of GSp(4) over a nonarchimedean local field.
Siegel paramodular forms have connections with the theory of automorphic representations and the Langlands program, Galois representations, the arithmetic of abelian surfaces, and algorithmic number theory. Providing a useful standard source on the subject, the book will be of interest to graduate students and researchers working in the above fields.


Produkteigenschaften


  • Artikelnummer: 9783031451768
  • Medium: Buch
  • ISBN: 978-3-031-45176-8
  • Verlag: Springer Nature Switzerland
  • Erscheinungstermin: 27.12.2023
  • Sprache(n): Englisch
  • Auflage: 1. Auflage 2023
  • Serie: Lecture Notes in Mathematics
  • Produktform: Kartoniert
  • Gewicht: 575 g
  • Seiten: 362
  • Format (B x H x T): 155 x 235 x 21 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Autoren

- Introduction. - Part I Local Theory. - 2. Background. - 3. Stable Klingen Vectors. - 4. Some Induced Representations. - 5. Dimensions. - 6. Hecke Eigenvalues and Minimal Levels. - 7. The Paramodular Subspace. - 8. Further Results About Generic Representations. - 9. Iwahori-Spherical Representations. - Part II Siegel Modular Forms. - 10. Background on Siegel Modular Forms. - 11. Operators on Siegel Modular Forms. - 12. Hecke Eigenvalues and Fourier Coefficients.