Verkauf durch Sack Fachmedien

Kalita

Tensor Calculus and Applications

Simplified Tools and Techniques

Medium: Buch
ISBN: 978-0-367-78014-2
Verlag: CRC Press
Erscheinungstermin: 31.03.2021
Lieferfrist: bis zu 10 Tage

The aim of this book is to make the subject easier to understand. This book provides clear concepts, tools, and techniques to master the subject -tensor, and can be used in many fields of research. Special applications are discussed in the book, to remove any confusion, and for absolute understanding of the subject.

In most books, they emphasize only the theoretical development, but not the methods of presentation, to develop concepts. Without knowing how to change the dummy indices, or the real indices, the concept cannot be understood. This book takes it down a notch and simplifies the topic for easy comprehension.

Features

- Provides a clear indication and understanding of the subject on how to change indices

- Describes the original evolution of symbols necessary for tensors

- Offers a pictorial representation of referential systems required for different kinds of tensors for physical problems

- Presents the correlation between critical concepts

- Covers general operations and concepts


Produkteigenschaften


  • Artikelnummer: 9780367780142
  • Medium: Buch
  • ISBN: 978-0-367-78014-2
  • Verlag: CRC Press
  • Erscheinungstermin: 31.03.2021
  • Sprache(n): Englisch
  • Auflage: 1. Auflage 2021
  • Serie: Mathematics and its Applications
  • Produktform: Kartoniert
  • Gewicht: 278 g
  • Seiten: 174
  • Format (B x H x T): 156 x 234 x 10 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Autoren

Part I Formalism of Tensor Calculus. 1. Prerequisites for Tensors. 2. Concept of Tensors. 3. Riemannian Metric and Fundamental Tensors. 4. Christoffel Three-Index Symbols (Brackets) and Covariant Differentiation. 5. Properties of Curves in Vn and Geodesics. 6. Riemann Symbols (Curvature Tensors). Part II. Application of Tensors. 7. Applications of Tensors in General Theory of Relativity. 8. Tensors in Continuum Mechanics. 9. Tensors in Geology. 10. Tensors in Fluid Dynamics. Appendix. Remarks. Bibliography.