Verkauf durch Sack Fachmedien

Kaltenbach

Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents

Medium: Buch
ISBN: 978-3-031-29669-7
Verlag: Springer International Publishing
Erscheinungstermin: 12.08.2023
Lieferfrist: bis zu 10 Tage

This book provides a comprehensive analysis of the existence of weak solutions of unsteady problems with variable exponents. The central motivation is the weak solvability of the unsteady p(.,.)-Navier–Stokes equations describing the motion of an incompressible electro-rheological fluid. Due to the variable dependence of the power-law index p(.,.) in this system, the classical weak existence analysis based on the pseudo-monotone operator theory in the framework of Bochner–Lebesgue spaces is not applicable. As a substitute for Bochner–Lebesgue spaces, variable Bochner–Lebesgue spaces are introduced and analyzed. In the mathematical framework of this substitute, the theory of pseudo-monotone operators is extended to unsteady problems with variable exponents, leading to the weak solvability of the unsteady p(.,.)-Navier–Stokes equations under general assumptions.

Aimed primarily at graduate readers, the book develops the material step-by-step, starting with the basics of PDE theory andnon-linear functional analysis. The concise introductions at the beginning of each chapter, together with illustrative examples, graphics, detailed derivations of all results and a short summary of the functional analytic prerequisites, will ease newcomers into the subject.


Produkteigenschaften


  • Artikelnummer: 9783031296697
  • Medium: Buch
  • ISBN: 978-3-031-29669-7
  • Verlag: Springer International Publishing
  • Erscheinungstermin: 12.08.2023
  • Sprache(n): Englisch
  • Auflage: 1. Auflage 2023
  • Serie: Lecture Notes in Mathematics
  • Produktform: Kartoniert
  • Gewicht: 563 g
  • Seiten: 358
  • Format (B x H x T): 155 x 235 x 21 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Autoren

- 1. Introduction. - 2. Preliminaries. - Part I Main Part. - 3. Variable Bochner–Lebesgue Spaces. - 4. Solenoidal Variable Bochner–Lebesgue Spaces. - 5. Existence Theory for Lipschitz Domains. - Part II Extensions. - 6. Pressure Reconstruction. - 7. Existence Theory for Irregular Domains. - 8. Existence Theory for p- < 2. - 9. Appendix.