Verkauf durch Sack Fachmedien

Kapoor / Chartrand

The Many Facets of Graph Theory

Proceedings of the Conference held at Western Michigan University, Kalamazoo/MI., October 31 - November 2, 1968

Medium: Buch
ISBN: 978-3-540-04629-5
Verlag: Springer Berlin Heidelberg
Erscheinungstermin: 01.01.1969
Lieferfrist: bis zu 10 Tage

Springer Book Archives


Produkteigenschaften


  • Artikelnummer: 9783540046295
  • Medium: Buch
  • ISBN: 978-3-540-04629-5
  • Verlag: Springer Berlin Heidelberg
  • Erscheinungstermin: 01.01.1969
  • Sprache(n): Englisch
  • Auflage: 1969
  • Serie: Lecture Notes in Mathematics
  • Produktform: Kartoniert
  • Gewicht: 464 g
  • Seiten: 292
  • Format (B x H x T): 155 x 235 x 17 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Herausgeber

Graphs and binary relations.- Graph theory and finite projective planes.- On Steinitz's theorem concerning convex 3-polytopes and on some properties of planar graphs.- Analogues of ramsey numbers.- A survey of packings and coverings of graphs.- Section graphs for finite permutation groups.- Nearly regular polyhedra with two exceptional faces.- Some applications of graph theory to number theory.- On the number of cycles in permutation graphs.- A note on a category of graphs.- Reconstructing graphs.- Incidence patterns of graphs and complexes.- A many-facetted problem of zarankiewicz.- Graph theory and lie algebra.- Matroids versus graphs.- On classes of graphs defined by special cutsets of lines.- Rank 3 graphs.- Variations on a theorem of Pósa.- Critically and minimally n-connected graphs.- On reconstruction of graphs.- The cohesive strength of graphs.- Hypo-properties in graphs.- An extension of graphs.- Hamiltonian circuits in graphs and digraphs.- On the density and chromatic numbers of graphs.- Methods for the enumeration of multigraphs.- Characterizations of 2-dimensional trees.- A combinatorial identity.- An application of graph theory to social psychology.- A topological influence: Homeomorphically irreducible graphs.- Graph theory and “Instant Insanity”.- Arc digraphs and traversability.