Verkauf durch Sack Fachmedien

Khan / Zălinescu / Tammer

Set-valued Optimization

An Introduction with Applications

Medium: Buch
ISBN: 978-3-662-51036-0
Verlag: Springer
Erscheinungstermin: 22.09.2016
Lieferfrist: bis zu 10 Tage

Set-valued optimization is a vibrant and expanding branch of mathematics that deals with optimization problems where the objective map and/or the constraints maps are set-valued maps acting between certain spaces. Since set-valued maps subsumes single valued maps, set-valued optimization provides an important extension and unification of the scalar as well as the vector optimization problems. Therefore this relatively new discipline has justifiably attracted a great deal of attention in recent years. This book presents, in a unified framework, basic properties on ordering relations, solution concepts for set-valued optimization problems, a detailed description of convex set-valued maps, most recent developments in separation theorems, scalarization techniques, variational principles, tangent cones of first and higher order, sub-differential of set-valued maps, generalized derivatives of set-valued maps, sensitivity analysis, optimality conditions, duality and applications in economicsamong other things.


Produkteigenschaften


  • Artikelnummer: 9783662510360
  • Medium: Buch
  • ISBN: 978-3-662-51036-0
  • Verlag: Springer
  • Erscheinungstermin: 22.09.2016
  • Sprache(n): Englisch
  • Auflage: Softcover Nachdruck of the original 1. Auflage 2015
  • Serie: Vector Optimization
  • Produktform: Kartoniert, Previously published in hardcover
  • Gewicht: 11694 g
  • Seiten: 765
  • Format (B x H x T): 155 x 235 x 42 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Autoren

Introduction.- Order Relations and Ordering Cones.- Continuity and Differentiability.- Tangent Cones and Tangent Sets.- Nonconvex Separation Theorems.- Hahn-Banach Type Theorems.- Hahn-Banach Type Theorems.- Conjugates and Subdifferentials.- Duality.- Existence Results for Minimal Points.- Ekeland Variational Principle.- Derivatives and Epiderivatives of Set-valued Maps.- Optimality Conditions in Set-valued Optimization.- Sensitivity Analysis in Set-valued Optimization and Vector Variational Inequalities.- Numerical Methods for Solving Set-valued Optimization Problems.- Applications.