Verkauf durch Sack Fachmedien

Klimyk / Vilenkin

Representation of Lie Groups and Special Functions

Volume 3: Classical and Quantum Groups and Special Functions

Medium: Buch
ISBN: 978-0-7923-1493-6
Verlag: Springer Netherlands
Erscheinungstermin: 30.09.1992
Lieferfrist: bis zu 10 Tage

Onc service malhemalics has rendered Ihe "Et moil.• si ravait au oomment en revcnir. je n'y serais point aU':' human race. It has put common sense back whcre it belongs, on the topmost shelf next Iules Verne to the dUlty canister IabeUed 'discarded n- sense'. The series is divergent; therefore we may be Eric T. BeU able to do something with it. O. H eaviside Mathematics is a tool for thought, A highly necessary tool in a world where both feedback and non­ linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other pans and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics.'; 'One service logic has rendered com­ puter science.'; 'One service category theory has rendered mathematics.'. All arguably true. And all statements obtainable this way form part of the raison d'are of this series.


Produkteigenschaften


  • Artikelnummer: 9780792314936
  • Medium: Buch
  • ISBN: 978-0-7923-1493-6
  • Verlag: Springer Netherlands
  • Erscheinungstermin: 30.09.1992
  • Sprache(n): Englisch
  • Auflage: 1992
  • Serie: Mathematics and its Applications
  • Produktform: Gebunden
  • Gewicht: 1141 g
  • Seiten: 634
  • Format (B x H x T): 160 x 241 x 41 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Autoren

14: Quantum Groups, q-Orthogonal Polynomials and Basic Hypergeometric Functions.- 15: Semisimple Lie Groups and Related Homogeneous Spaces.- 16: Representations of Semisimple Lie Groups and Their Matrix Elements.- 17: Group Representations and Special Functions of a Matrix Argument.- 18: Representations in the Gel’fand-Tsetlin Basis and Special Functions.- 19: Modular Forms, Theta Functions and Representations of Affine Lie Algebras.- Bibliography Notes.