Verkauf durch Sack Fachmedien

Kramer

Self-Adaptive Heuristics for Evolutionary Computation

Medium: Buch
ISBN: 978-3-540-69280-5
Verlag: Springer Berlin Heidelberg
Erscheinungstermin: 19.08.2008
Lieferfrist: bis zu 10 Tage

Evolutionary algorithms are successful biologically inspired meta-heuristics. Their success depends on adequate parameter settings. The question arises: how can evolutionary algorithms learn parameters automatically during the optimization? Evolution strategies gave an answer decades ago: self-adaptation. Their self-adaptive mutation control turned out to be exceptionally successful. But nevertheless self-adaptation has not achieved the attention it deserves.

This book introduces various types of self-adaptive parameters for evolutionary computation. Biased mutation for evolution strategies is useful for constrained search spaces. Self-adaptive inversion mutation accelerates the search on combinatorial TSP-like problems. After the analysis of self-adaptive crossover operators the book concentrates on premature convergence of self-adaptive mutation control at the constraint boundary. Besides extensive experiments, statistical tests and some theoretical investigations enrich the analysis of the proposed concepts.


Produkteigenschaften


  • Artikelnummer: 9783540692805
  • Medium: Buch
  • ISBN: 978-3-540-69280-5
  • Verlag: Springer Berlin Heidelberg
  • Erscheinungstermin: 19.08.2008
  • Sprache(n): Englisch
  • Auflage: 2008
  • Serie: Studies in Computational Intelligence
  • Produktform: Gebunden
  • Gewicht: 465 g
  • Seiten: 182
  • Format (B x H x T): 160 x 241 x 16 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Autoren

I: Foundations of Evolutionary Computation.- Evolutionary Algorithms.- Self-Adaptation.- II: Self-Adaptive Operators.- Biased Mutation for Evolution Strategies.- Self-Adaptive Inversion Mutation.- Self-Adaptive Crossover.- III: Constraint Handling.- Constraint Handling Heuristics for Evolution Strategies.- IV: Summary.- Summary and Conclusion.- V: Appendix.- Continuous Benchmark Functions.- Discrete Benchmark Functions.