Verkauf durch Sack Fachmedien

Kutoyants

Identification of Dynamical Systems with Small Noise

Medium: Buch
ISBN: 978-0-7923-3053-0
Verlag: Springer Netherlands
Erscheinungstermin: 31.08.1994
Lieferfrist: bis zu 10 Tage

Small noise is a good noise. In this work, we are interested in the problems of estimation theory concerned with observations of the diffusion-type process Xo = Xo, 0 ~ t ~ T, (0. 1) where W is a standard Wiener process and St(') is some nonanticipative smooth t function. By the observations X = {X, 0 ~ t ~ T} of this process, we will solve some t of the problems of identification, both parametric and nonparametric. If the trend S(-) is known up to the value of some finite-dimensional parameter St(X) = St((}, X), where (} E e c Rd, then we have a parametric case. The nonparametric problems arise if we know only the degree of smoothness of the function St(X), 0 ~ t ~ T with respect to time t. It is supposed that the diffusion coefficient c is always known. In the parametric case, we describe the asymptotical properties of maximum likelihood (MLE), Bayes (BE) and minimum distance (MDE) estimators as c --+ 0 and in the nonparametric situation, we investigate some kernel-type estimators of unknown functions (say, StO,O ~ t ~ T). The asymptotic in such problems of estimation for this scheme of observations was usually considered as T --+ 00, because this limit is a direct analog to the traditional limit (n --+ 00) in the classical mathematical statistics of i. i. d. observations. The limit c --+ 0 in (0. 1) is interesting for the following reasons.


Produkteigenschaften


  • Artikelnummer: 9780792330530
  • Medium: Buch
  • ISBN: 978-0-7923-3053-0
  • Verlag: Springer Netherlands
  • Erscheinungstermin: 31.08.1994
  • Sprache(n): Englisch
  • Auflage: 1994
  • Serie: Mathematics and Its Applications
  • Produktform: Gebunden
  • Gewicht: 635 g
  • Seiten: 301
  • Format (B x H x T): 160 x 241 x 22 mm
  • Ausgabetyp: Kein, Unbekannt

Themen


Autoren/Hrsg.

Autoren

1 Auxiliary Results.- 1.1 Some notions of probability theory.- 1.2 Stochastic integral.- 1.3 On asymptotic estimation theory.- 2 Asymptotic Properties of Estimators in Standard and Nonstandard Situations.- 2.1 LAM bound on the risks of estimators.- 2.2 Asymptotic behavior of estimators in the regular case.- 2.3 Parameter estimation for linear systems.- 2.4 Nondifferentiable and “too differentiable” trends.- 2.5 Random initial value.- 2.6 Misspecified models.- 2.7 Nonconsistent estimation.- 2.8 Boundary of the parametric set.- 3 Expansions.- 3.1 Expansion of the MLE.- 3.2 Possible generalizations.- 3.3 Expansion of the distribution function.- 4 Nonparametric Estimation.- 4.1 Trend estimation.- 4.2 Linear multiplier estimation.- 4.3 State estimation.- 5 The Disorder Problem.- 5.1 Simultaneous estimation of the smooth parameter and the moment of switching.- 5.2 Multidimensional disorder.- 5.3 Misspecified disorder.- 6 Partially Observed Systems.- 6.1 Kalman filter identification.- 6.2 Nonlinear systems.- 6.3 Disorder problem for Kalman filter.- 7 Minimum Distance Estimation.- 7.1 Definitions and examples of the MDE.- 7.2 Consistence and limit distributions.- 7.3 Linear systems.- 7.4 Nonstandard situations and other problems.- 7.5 Asymptotic efficiency of the MDE.- Remarks.- References.