Verkauf durch Sack Fachmedien

Lidow / Strydom / de Rooij

GaN Transistors for Efficient Power Conversion

Medium: Buch
ISBN: 978-1-118-84476-2
Verlag: John Wiley & Sons
Erscheinungstermin: 05.09.2014
Nicht mehr lieferbar

Gallium nitride (GaN) is an emerging technology that promises to displace silicon MOSFETs in the next generation of power transistors. As silicon approaches its performance limits, GaN devices offer superior conductivity and switching characteristics, allowing designers to greatly reduce system power losses, size, weight, and cost.

This timely second edition has been substantially expanded to keep students and practicing power conversion engineers ahead of the learning curve in GaN technology advancements. Acknowledging that GaN transistors are not one-to-one replacements for the current MOSFET technology, this book serves as a practical guide for understanding basic GaN transistor construction, characteristics, and applications. Included are discussions on the fundamental physics of these power semiconductors, layout and other circuit design considerations, as well as specific application examples demonstrating design techniques when employing GaN devices.

With higher-frequency switching capabilities, GaN devices offer the chance to increase efficiency in existing applications such as DC-DC conversion, while opening possibilities for new applications including wireless power transfer and envelope tracking. This book is an essential learning tool and reference guide to enable power conversion engineers to design energy-efficient, smaller and more cost-effective products using GaN transistors.

Key features:

* Written by leaders in the power semiconductor field and industry pioneers in GaN power transistor technology and applications.
* Contains useful discussions on device-circuit interactions, which are highly valuable since the new and high performance GaN power transistors require thoughtfully designed drive/control circuits in order to fully achieve their performance potential.
* Features practical guidance on formulating specific circuit designs when constructing power conversion systems using GaN transistors - see companion website for further details.
* A valuable learning resource for professional engineers and systems designers needing to fully understand new devices as well as electrical engineering students.


Produkteigenschaften


  • Artikelnummer: 9781118844762
  • Medium: Buch
  • ISBN: 978-1-118-84476-2
  • Verlag: John Wiley & Sons
  • Erscheinungstermin: 05.09.2014
  • Sprache(n): Englisch
  • Auflage: 2. Auflage 2014
  • Produktform: Gebunden, HC gerader Rücken kaschiert
  • Gewicht: 574 g
  • Seiten: 266
  • Format (B x H x T): 172 x 254 x 22 mm
  • Ausgabetyp: Kein, Unbekannt
  • Nachauflage: 978-1-119-59414-7
Autoren/Hrsg.

Autoren

Foreword xiii

Acknowledgments xv

1 GaN Technology Overview 1

1.1 Silicon Power MOSFETs 1976-2010 1

1.2 The GaN Journey Begins 2

1.3 Why Gallium Nitride? 2

1.3.1 Band Gap (Eg) 3

1.3.2 Critical Field (Ecrit) 3

1.3.3 On-Resistance (RDS(on)) 4

1.3.4 The Two-Dimensional Electron Gas 4

1.4 The Basic GaN Transistor Structure 6

1.4.1 Recessed Gate Enhancement-Mode Structure 7

1.4.2 Implanted Gate Enhancement-Mode Structure 7

1.4.3 pGaN Gate Enhancement-Mode Structure 8

1.4.4 Cascode Hybrid Enhancement-Mode Structure 8

1.4.5 Reverse Conduction in HEMT Transistors 10

1.5 Building a GaN Transistor 10

1.5.1 Substrate Material Selection 10

1.5.2 Growing the Heteroepitaxy 11

1.5.3 Processing the Wafer 12

1.5.4 Making Electrical Connection to the Outside World 14

1.6 Summary 14

References 17

2 GaN Transistor Electrical Characteristics 19

2.1 Introduction 19

2.2 Key Device Parameters 19

2.2.1 Breakdown Voltage (BVDSS) and Leakage Current (IDSS) 19

2.2.2 On-Resistance (RDS(on)) 24

2.2.3 Threshold Voltage (VGS(th) or Vth) 26

2.3 Capacitance and Charge 27

2.4 Reverse Conduction 31

2.5 Thermal Resistance 33

2.6 Transient Thermal Impedance 36

2.7 Summary 37

References 38

3 Driving GaN Transistors 39

3.1 Introduction 39

3.2 Gate Drive Voltage 41

3.3 Bootstrapping and Floating Supplies 43

3.4 dv/dt Immunity 44

3.5 di/dt Immunity 47

3.6 Ground Bounce 48

3.7 Common Mode Current 50

3.8 Gate Driver Edge Rate 51

3.9 Driving Cascode GaN Devices 51

3.10 Summary 53

References 53

4 Layout Considerations for GaN Transistor Circuits 55

4.1 Introduction 55

4.2 Minimizing Parasitic Inductance 55

4.3 Conventional Power Loop Designs 58

4.4 Optimizing the Power Loop 60

4.5 Paralleling GaN Transistors 61

4.5.1 Paralleling GaN Transistors for a Single Switch 61

4.5.2 Paralleling GaN Transistors for Half-Bridge Applications 65

4.6 Summary 69

References 69

5 Modeling and Measurement of GaN Transistors 70

5.1 Introduction 70

5.2 Electrical Modeling 70

5.2.1 Basic Modeling 70

5.2.2 Limitations of Basic Modeling 73

5.2.3 Limitations of Circuit Modeling 75

5.3 Thermal Modeling 76

5.3.1 Improving Thermal Performance 77

5.3.2 Modeling of Multiple Die 79

5.3.3 Modeling of Complex Systems 82

5.4 Measuring GaN Transistor Performance 83

5.4.1 Voltage Measurement Requirements 83

5.4.2 Current Measurement Requirement 85

5.5 Summary 87

References 87

6 Hard-Switching Topologies 89

6.1 Introduction 89

6.2 Hard-Switching Loss Analysis 89

6.2.1 Switching Losses 91

6.2.2 Output Capacitance (COSS) Losses 96

6.2.3 Gate Charge (QG) Losses 96

6.2.4 Reverse Conduction Losses (PSD) 97

6.2.5 Reverse Recovery (QRR) Losses 99

6.2.6 Total Hard-Switching Losses 99

6.2.7 Hard-Switching Figure of Merit 100

6.3 External Factors Impacting Hard-Switching Losses 101

6.3.1 Impact of Common-Source Inductance 101

6.3.2 Impact of High Frequency Power-Loop Inductance on Device Losses 103

6.4 Reducing Body Diode Conduction Losses in GaN Transistors 106

6.5 Frequency Impact on Magnetics 109

6.5.1 Transformers 109

6.5.2 Inductors 110

6.6 Buck Converter Example 110

6.6.1 Output Capacitance Losses 112

6.6.2 Gate Losses (PG) 114

6.6.3 Body Diode Conduction Losses (PSD) 117

6.6.4 Switching Losses (Psw) 119

6.6.5 Total Dynamic Losses (PDynamic) 120

6.6.6 Conduction Losses (PConduction) 120

6.6.7 Total Device Hard-Switching Losses (PHS) 121

6.6.8 Inductor Losses (PL) 122

6.6.9 Total Buck Converter Estimated Losses (PTotal) 122

6.6.10 Buck Converter Loss Analysis Accounting for Common Source Inductance 123

6.6.11 Experimental Results for the Buck Converter 125

6.7 Summary 126

References 126

7 Resonant and Soft-Switching Converters 128

7.1 Introduction 128

7.2 Resonant and Soft-Switching Techniques 128

7.2.