Verkauf durch Sack Fachmedien

Mandal / Mukherjee / Sa

Computational Intelligence and Machine Learning

Proceedings of the 7th International Conference on Advanced Computing, Networking, and Informatics (ICACNI 2019)

Medium: Buch
ISBN: 978-981-15-8609-5
Verlag: Springer Nature Singapore
Erscheinungstermin: 25.11.2020
Lieferfrist: bis zu 10 Tage

This book focuses on both theory and applications in the broad areas of computational intelligence and machine learning. The proceedings of the Seventh International Conference on Advanced Computing, Networking, and Informatics (ICACNI 2019) present research papers in the areas of advanced computing, networking, and informatics. It brings together contributions from scientists, professors, scholars, and students and presents essential information on the topic. It also discusses the practical challenges encountered and the solutions used to overcome them, the goal being to promote the “translation” of basic research into applied research and of applied research into practice. The works presented here also demonstrate the importance of basic scientific research in a range of fields.


Produkteigenschaften


  • Artikelnummer: 9789811586095
  • Medium: Buch
  • ISBN: 978-981-15-8609-5
  • Verlag: Springer Nature Singapore
  • Erscheinungstermin: 25.11.2020
  • Sprache(n): Englisch
  • Auflage: 1. Auflage 2021
  • Serie: Advances in Intelligent Systems and Computing
  • Produktform: Kartoniert
  • Gewicht: 330 g
  • Seiten: 200
  • Format (B x H x T): 155 x 235 x 12 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Herausgeber

Minutiae Points Extraction using Faster R-CNN.- Genetic Algorithm based Optimization of Clustering Data Points by Propagating Probabilities.- Detection of Malaria Parasites in Thin Blood Smears using CNN Based Approach.- A Deep Learning Approach for Predicting Air Pollution in Smart Cities.- Structural Design of Convolutional Neural Network based Steganalysis.- Sarcasm Detection of Media Text using Deep Neural Networks.- Sentiment Analysis Using Twitter.- A Type-Specific Attention Model for Fine Grained Entity Type Classification.- A Two Phase Approach using LDA for Effective Domain Specific Tweets Conveying Sentiments.- News Background Linking using Document Similarity Techniques.