Verkauf durch Sack Fachmedien

Markovsky

Low Rank Approximation

Algorithms, Implementation, Applications

Medium: Buch
ISBN: 978-1-4471-5836-3
Verlag: Springer
Erscheinungstermin: 26.01.2014
Nicht mehr lieferbar

Data Approximation by Low-complexity Models details the theory, algorithms, and applications of structured low-rank approximation. Efficient local optimization methods and effective suboptimal convex relaxations for Toeplitz, Hankel, and Sylvester structured problems are presented. Much of the text is devoted to describing the applications of the theory including: system and control theory; signal processing; computer algebra for approximate factorization and common divisor computation; computer vision for image deblurring and segmentation; machine learning for information retrieval and clustering; bioinformatics for microarray data analysis; chemometrics for multivariate calibration; and psychometrics for factor analysis.

Software implementation of the methods is given, making the theory directly applicable in practice. All numerical examples are included in demonstration files giving hands-on experience and exercises and MATLAB® examples assist in the assimilation of the theory.


Produkteigenschaften


  • Artikelnummer: 9781447158363
  • Medium: Buch
  • ISBN: 978-1-4471-5836-3
  • Verlag: Springer
  • Erscheinungstermin: 26.01.2014
  • Sprache(n): Englisch
  • Auflage: 2012
  • Serie: Communications and Control Engineering
  • Produktform: Kartoniert, Previously published in hardcover
  • Gewicht: 411 g
  • Seiten: 258
  • Format (B x H x T): 155 x 235 x 15 mm
  • Ausgabetyp: Kein, Unbekannt
  • Nachauflage: 978-3-319-89619-9

Themen


Autoren/Hrsg.

Autoren

Introduction.- From Data to Models.- Applications in System and Control Theory.- Applications in Signal Processing.- Applications in Computer Algebra.- Applications in Machine Learing.- Subspace-type Algorithms.- Algorithms Based on Local Optimization.- Data Smoothing and Filtering.- Recursive Algorithms.