Verkauf durch Sack Fachmedien

Mitrinovic / Fink / Pecaric

Classical and New Inequalities in Analysis

Medium: Buch
ISBN: 978-90-481-4225-5
Verlag: Springer Netherlands
Erscheinungstermin: 06.12.2010
Lieferfrist: bis zu 10 Tage

One service mathematic;., has Jcndcml the 'Et moi,. ~ si j'avait su comment CD revcnir, human race. It has put COIDDlOJI SCIISC back je n'y scrais point allC.' whc:rc it belongs, on the topmost shell next Jules Verne to the dusty canister labc1lcd 'dilcardcd nOD- The series is divergent; tbcre(on: we may be sense'. Eric T. Bcll able to do something with it o. Hcavisidc Mathematics is a tool for thought. A highly necessary tooll in a world where both feedbaclt and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other paJts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics.'; 'One service logic has rendered com puter science.'; 'One service category theory has rendered mathematics.'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.


Produkteigenschaften


  • Artikelnummer: 9789048142255
  • Medium: Buch
  • ISBN: 978-90-481-4225-5
  • Verlag: Springer Netherlands
  • Erscheinungstermin: 06.12.2010
  • Sprache(n): Englisch
  • Auflage: 1. Auflage. Softcover version of original hardcover Auflage 1993
  • Serie: Mathematics and its Applications
  • Produktform: Kartoniert, Previously published in hardcover
  • Gewicht: 1136 g
  • Seiten: 740
  • Format (B x H x T): 155 x 235 x 41 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Autoren

I. Convex functions and Jensen’s inequality.- II. Some recent results involving means.- III. Bernoulli’s inequality.- IV. Cauchy’s and related inequalities.- V. Hölder’s and Minkowski’s inequalities.- VI. Generalized Hölder and Minkowski inequalities.- VII. Connections between general inequalities.- VIII. Some Determinantal and Matrix inequalities.- IX. ?ebyšev’s inequality.- X. Grüss’ inequality.- XI. Steffensen’s inequality.- XII. Abel’s and related inequalities.- XIII. Some inequalities for monotone functions.- XIV. Young’s inequality.- XV. Bessel’s inequality.- XVI. Cyclic inequalities.- XVII. Triangle inequalities.- XVIII. Norm inequalities.- XIX. More on norm inequalities.- XX. Gram’s inequality.- XXI. Fejér-Jackson’s inequalities and related results.- XXII. Mathieu’s inequality.- XXIII. Shannon’s inequality.- XXIV. Turán’s inequality from the power sum theory.- XXV. Continued fractions and Padé approximation method.- XXVI. Quasilinearizai ion methods for proving inequalities.- XXVII. The centroid method in inequalities.- XXVIII. Dynamic programming and functional equation approaches to inequalities.- XXIX. Interpolation inequalities.- XXX. Convex Mini max inequalities-equalities.- Name Index.