Verkauf durch Sack Fachmedien

Nermend

Multi-Criteria and Multi-Dimensional Analysis in Decisions

Decision Making with Preference Vector Methods (PVM) and Vector Measure Construction Methods (VMCM)

Medium: Buch
ISBN: 978-3-031-40540-2
Verlag: Springer Nature Switzerland
Erscheinungstermin: 02.11.2024
Lieferfrist: bis zu 10 Tage

A new era is emerging in which a group of quantitative methods featuring characteristics of multidimensional comparative analysis (MCA) and multi-criteria decision-making analysis (MCDA) can be used to automate objective decision-making processes. This book introduces the character of the criteria (desirable, non-desirable, motivating, demotivating, and neutral) to MCDA and MCA methods. It presents the author’s own developed methods, the preference vector method (PVM), for solving multi-criteria problems in decision making; and, vector measure construction method (VMCM), which is dedicated to solving typical problems in the field of multidimensional comparative analysis. All methods are explained step by step with relevant examples, primarily in the fields of economics and management.



Produkteigenschaften


  • Artikelnummer: 9783031405402
  • Medium: Buch
  • ISBN: 978-3-031-40540-2
  • Verlag: Springer Nature Switzerland
  • Erscheinungstermin: 02.11.2024
  • Sprache(n): Englisch
  • Auflage: Erscheinungsjahr 2024
  • Serie: Vector Optimization
  • Produktform: Kartoniert
  • Gewicht: 563 g
  • Seiten: 354
  • Format (B x H x T): 155 x 235 x 21 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Autoren

Chapter 1 Introduction.- Chapter 2 Problems of multi-criteria and multidimensionality in decision support.- Part I: Methods of multidimensional comparative analysis.- Chapter 3 Initial data analysis procedure.- Chapter 4 Methods for building aggregate measures.- Part II: Multi-criteria decision support methods.- Chapter 5 Methods based on the outranking relationship.- Chapter 6 Methods based on the utility function.- Chapter 7 Multi-criteria methods using function points.- Chapter 8 Conclusions.