Verkauf durch Sack Fachmedien

Nikhil Kumar

Magnetic Resonators

Feedback with Magnetic Field and Magnetic Cavity

Medium: Buch
ISBN: 978-981-19-6175-5
Verlag: Springer Nature Singapore
Erscheinungstermin: 07.10.2022
Lieferfrist: bis zu 10 Tage

The phase-locking of multiple spin-torque nano oscillators(STNOs) is considered the primary vehicle to achieve sufficient signal quality for applications. This book highlights the resonator's design and its need for feedback for phase locking of STNOs. STNOs can act as sources of tunable microwaves after being phase-locked together. External feedback from a coplanar waveguide placed above an STNO helps ensures coherent single domain oscillations. STNOs placed within magnonic crystal cavities also demonstrate coherent oscillations. Arrays of such cavities provide a route to scale power levels from such nano-oscillators. The book presents numerical and micromagnetics to validate the design.


Produkteigenschaften


  • Artikelnummer: 9789811961755
  • Medium: Buch
  • ISBN: 978-981-19-6175-5
  • Verlag: Springer Nature Singapore
  • Erscheinungstermin: 07.10.2022
  • Sprache(n): Englisch
  • Auflage: 1. Auflage 2022
  • Serie: SpringerBriefs in Applied Sciences and Technology
  • Produktform: Kartoniert
  • Gewicht: 197 g
  • Seiten: 92
  • Format (B x H x T): 155 x 235 x 6 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Autoren

1 - Introduction

1 1.1 Magnonic devices

1 1.1.1 Unconventional Computing

3 1.1.2 Hybrid magnonics and Magnon spintronics

4 1.1.3 STNO configurations

6 1.1.4 STNO device principle

8 1.1.5 Mutual synchronization of STNOs

8 1.2 Landau - Lifshitz - Gilbert - Slonczewski equation

94 1.2.1 Numerical Methods

10 1.2.2 Finite Difference and Finite Element method

14 Summary



2- Analytical model for a magnonic ring resonator

2.1 Geometry and analysis

2.2 Dispersion relation of curved magnonic waveguide

2.3 Validations

2.4 Modes in a magnonic ring



3 - Magnonic spectra in 2D antidot magnonic crystals with ring

3.1 Plane wave method

3.1.1 Convergence

3.2 Eigenmodes

3.3 Micromagnetic simulations

3.3.1 Magnonic spectra

3.3.2 Antidot magnonic crystal waveguide with linear defect





4 – Magnetic resonators with magnetic field feedback



4. 1 Introduction



4. 1 Problem statement

4. 2 Micromagnetic simulation without magnetic field feedback

4.3 Free layer model

4.4 Free layer Hysteresis loops

4.5 Ferromagnetic resonance frequency versus applied field

4.6 FMR versus applied field for different in plane and out of plane anisotropy FMR versus applied field for different out of plane anisotropy

4.7 Current dependence on resonance frequency

4.8 Spintronic oscillators with magnetic field feedback

4.9 Spin wave dynamics with magnetic field feedback

4.10 Spin wave dynamics at 300 K

4.11 Linewidth (Without magnetic field feedback)

4.4 Linewidth (with magnetic field feedback)

4.5 Spin wave spectra with different delay



5 – Magnetic resonators magnetic cavity feedback



5.1- I. Introduction

5.1.2. Micromagnetic Simulations

5.1.3 Method of Calculation

5.1.4 Band structure of antidot MC

5.1.5 Spin wave injection on Py film using an array of nano contacts

5.1.6 Fabry Perot model

5.1.7 Quality Factor Calculation