A classical problem in the calculus of variations is the investigation of critical points of functionals {\cal L} on normed spaces . The present work addresses the question: Under what conditions on the functional {\cal L} and the underlying space does {\cal L} have at most one critical point?
A sufficient condition for uniqueness is given: the presence of a "variational sub-symmetry", i.e., a one-parameter group of transformations of , which strictly reduces the values of {\cal L}. The "method of transformation groups" is applied to second-order elliptic boundary value problems on Riemannian manifolds. Further applications include problems of geometric analysis and elasticity.
Produkteigenschaften
- Artikelnummer: 9783540218395
- Medium: Buch
- ISBN: 978-3-540-21839-5
- Verlag: Springer
- Erscheinungstermin: 13.05.2004
- Sprache(n): Englisch
- Auflage: 1. Auflage 2004
- Serie: Lecture Notes in Mathematics
- Produktform: Kartoniert
- Gewicht: 550 g
- Seiten: 158
- Format (B x H): 155 x 235 mm
- Ausgabetyp: Kein, Unbekannt