Verkauf durch Sack Fachmedien

Rengaswamy / Suresh

Data Science for Engineers

Medium: Buch
ISBN: 978-0-367-75426-6
Verlag: Taylor & Francis Ltd
Erscheinungstermin: 16.12.2022
Lieferfrist: bis zu 10 Tage

With tremendous improvement in computational power and availability of rich data, almost all engineering disciplines use data science at some level. This textbook presents material on data science comprehensively, and in a structured manner. It provides conceptual understanding of the fields of data science, machine learning, and artificial intelligence, with enough level of mathematical details necessary for the readers. This will help readers understand major thematic ideas in data science, machine learning and artificial intelligence, and implement first-level data science solutions to practical engineering problems.

The book-

- Provides a systematic approach for understanding data science techniques

- Explain why machine learning techniques are able to cross-cut several disciplines.

- Covers topics including statistics, linear algebra and optimization from a data science perspective.

- Provides multiple examples to explain the underlying ideas in machine learning algorithms

- Describes several contemporary machine learning algorithms

The textbook is primarily written for undergraduate and senior undergraduate students in different engineering disciplines including chemical engineering, mechanical engineering, electrical engineering, electronics and communications engineering for courses on data science, machine learning and artificial intelligence.


Produkteigenschaften


  • Artikelnummer: 9780367754266
  • Medium: Buch
  • ISBN: 978-0-367-75426-6
  • Verlag: Taylor & Francis Ltd
  • Erscheinungstermin: 16.12.2022
  • Sprache(n): Englisch
  • Auflage: 1. Auflage 2022
  • Produktform: Gebunden
  • Gewicht: 666 g
  • Seiten: 360
  • Format (B x H x T): 241 x 161 x 27 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Autoren

Chapter 1. Introduction to DS, ML AI

Chapter 2. DS and ML - fundamental concepts

Chapter 3. Linear algebra for DS and ML

Chapter 4. Optimization for DS and ML

Chapter 5. Statistical foundations for DS and ML

Chapter 6. Function approximation methods

Chapter 7. Classification methods

Chapter 8. Conclusions and future directions

References

Index