Verkauf durch Sack Fachmedien

Roy

Computational Modeling of Drugs Against Alzheimer's Disease

Medium: Buch
ISBN: 978-1-4939-7403-0
Verlag: Springer
Erscheinungstermin: 29.09.2017
Lieferfrist: bis zu 10 Tage

This volume describes different computational methods encompassing ligand-based approaches (QSAR, pharmcophore), structure-based approaches (homology modeling, docking, molecular dynamics simulation), and combined approaches (virtual screening) with applications in anti-Alzheimer drug design. Different background topics like molecular etiologies of Alzheimer’s disease, targets for new drug development, and different cheminformatic modeling strategies are covered for completeness. Special topics like multi-target drug development, natural products, protein misfolding, and nanomaterials are also included in connection with computational modeling of anti-Alzheimer drug development. In Neuromethods series style, chapters include the kind of detail and key advice from the specialists needed to get successful results in your laboratory. 

Cutting-edge and authoritative, Computational Modeling of Drugs Against Alzheimer’s Disease is a valuable resource for learningabout the latest computational techniques used to study this disease. 



Produkteigenschaften


  • Artikelnummer: 9781493974030
  • Medium: Buch
  • ISBN: 978-1-4939-7403-0
  • Verlag: Springer
  • Erscheinungstermin: 29.09.2017
  • Sprache(n): Englisch
  • Auflage: 1. Auflage 2018
  • Serie: Neuromethods
  • Produktform: Gebunden
  • Gewicht: 13756 g
  • Seiten: 645
  • Format (B x H x T): 183 x 260 x 41 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Herausgeber

Alzheimer’s Disease Therapy: Present and Future Molecules.- Recent Advances in Computational Approaches for Designing Potential Anti-Alzheimer’s Agents.- Computer-Aided Drug Design Approaches to Study Key Therapeutic Targets in Alzheimer’s Disease.- Virtual Screening in the Search of New and Potent Anti-Alzheimer Agents.- Molecular Field Topology Analysis (MFTA) in the Design of Neuroprotective Compounds.- Galantamine Derivatives as Acetylcholinesterase Inhibitors: Docking, Design, Synthesis, and Inhibitory Activity.- Modeling of BACE-1 Inhibitors as Anti-Alzheimer’s Agents.- Design of Anti-Alzheimer’s Disease Agents Focusing on a Specific Interaction with Target Biomolecules.- Molecular Docking and Molecular Dynamics Simulation to Evaluate Compounds that Avoid the Amyloid Beta 1-42 Aggregation.- In Silico Strategies to Design Small Molecules to Study Beta-Amyloid Aggregation.- Computational Approaches to Understand Cleavage Mechanism of Amyloid Beta (Aß) Peptide.- Computational Modeling of Gamma-Secretase Inhibitors as Anti-Alzheimer Agents.- Molecular Modeling of Tau Proline-Directed Protein Kinase (PDPK) Inhibitors.- Computational Modeling of Kinase Inhibitors as Anti-Alzheimer Agents.- Computational Modeling of Drugs for Alzheimer's Disease: Design of Serotonin 5-HT6 Antagonists.- Computational Modeling of Diagnostic Imaging Agents for Alzheimer's Disease: Molecular Imaging Agents for the In Vivo Detection of Amyloid Plaques in Alzheimer’s Disease.- Computational Approaches for Therapeutic Application of Natural Products in Alzheimer’s Disease.- In Silico Studies Applied to Natural Products with Potential Activity against Alzheimer’s Disease.- Computational Modeling of Multi-Target Directed Inhibitors against Alzheimer's Disease.- Neuropharmacology in Flux:  Molecular Modeling Tools for Understanding Protein Conformational Shifts in Alzheimer’s Disease and Related Disorders.- Computational Nanotechnology: A Tool for Screening Therapeutic Nanomaterials against Alzheimer's Disease.