Verkauf durch Sack Fachmedien

Shao / Chen / Cui

Large-scale Graph Analysis: System, Algorithm and Optimization

Medium: Buch
ISBN: 978-981-15-3930-5
Verlag: Springer Nature Singapore
Erscheinungstermin: 02.07.2021
Lieferfrist: bis zu 10 Tage

This book introduces readers to a workload-aware methodology for large-scale graph algorithm optimization in graph-computing systems, and proposes several optimization techniques that can enable these systems to handle advanced graph algorithms efficiently. More concretely, it proposes a workload-aware cost model to guide the development of high-performance algorithms. On the basis of the cost model, the book subsequently presents a system-level optimization resulting in a partition-aware graph-computing engine, PAGE. In addition, it presents three efficient and scalable advanced graph algorithms – the subgraph enumeration, cohesive subgraph detection, and graph extraction algorithms.

This book offers a valuable reference guide for junior researchers, covering the latest advances in large-scale graph analysis; and for senior researchers, sharing state-of-the-art solutions based on advanced graph algorithms. In addition, all readers will find a workload-aware methodology fordesigning efficient large-scale graph algorithms.


Produkteigenschaften


  • Artikelnummer: 9789811539305
  • Medium: Buch
  • ISBN: 978-981-15-3930-5
  • Verlag: Springer Nature Singapore
  • Erscheinungstermin: 02.07.2021
  • Sprache(n): Englisch
  • Auflage: 1. Auflage 2020
  • Serie: Big Data Management
  • Produktform: Kartoniert
  • Gewicht: 254 g
  • Seiten: 146
  • Format (B x H x T): 155 x 235 x 9 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Autoren

1. Introduction.- 2. Graph Computing Systems for Large-Scale Graph Analysis.- 3. Partition-Aware Graph Computing System.- 4. Efficient Parallel Subgraph Enumeration.- 5. Efficient Parallel Graph Extraction.- 6. Efficient Parallel Cohesive Subgraph Detection.- 7. Conclusions.