Verkauf durch Sack Fachmedien

Sharma / Martinovic / Chakrabarti

Data Management, Analytics and Innovation

Proceedings of ICDMAI 2020, Volume 1

Medium: Buch
ISBN: 978-981-15-5615-9
Verlag: Springer Nature Singapore
Erscheinungstermin: 19.08.2020
Lieferfrist: bis zu 10 Tage

This book presents the latest findings in the areas of data management and smart computing, big data management, artificial intelligence and data analytics, along with advances in network technologies. Gathering peer-reviewed research papers presented at the Fourth International Conference on Data Management, Analytics and Innovation (ICDMAI 2020), held on 17–19 January 2020 at the United Services Institute (USI), New Delhi, India, it addresses cutting-edge topics and discusses challenges and solutions for future development. Featuring original, unpublished contributions by respected experts from around the globe, the book is mainly intended for a professional audience of researchers and practitioners in academia and industry.


Produkteigenschaften


  • Artikelnummer: 9789811556159
  • Medium: Buch
  • ISBN: 978-981-15-5615-9
  • Verlag: Springer Nature Singapore
  • Erscheinungstermin: 19.08.2020
  • Sprache(n): Englisch
  • Auflage: 1. Auflage 2021
  • Serie: Advances in Intelligent Systems and Computing
  • Produktform: Kartoniert
  • Gewicht: 835 g
  • Seiten: 476
  • Format (B x H x T): 155 x 235 x 25 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Herausgeber

Improving Microblog Clustering: Tweet Pooling Schemes.- An IoT based parking framework for smart cities.- Open Source Challenges & Opportunities.- Empirical study on the perception of accounting professionals towards awareness and adoption of IFRS in India.- On Readability Metrics of Goal Statements of Universities and Brand-promoting Lexicons for Industries.- An Efficient Recommendation System on E-Learning  Platform by Query Lattice Optimization.- DengueCBC: Dengue EHR Transmission using Secure Consortium Blockchain Enabled Platform.- Online Credit Card Fraud Analytics using Machine Learning  Techniques.- Identifying Major Critical Factors Faced by Tourism Industry Using Apriori Algorithm.