Verkauf durch Sack Fachmedien

Somani / Prasad / Horsch

Interpretability in Deep Learning

Medium: Buch
ISBN: 978-3-031-20641-2
Verlag: Springer Nature Switzerland
Erscheinungstermin: 02.05.2024
Lieferfrist: bis zu 10 Tage

This book is a comprehensive curation, exposition and illustrative discussion of recent research tools for interpretability of deep learning models, with a focus on neural network architectures. In addition, it includes several case studies from application-oriented articles in the fields of computer vision, optics and machine learning related topic. 

The book can be used as a monograph on interpretability in deep learning covering the most recent topics as well as a textbook for graduate students. Scientists with research, development and application responsibilities benefit from its systematic exposition.


Produkteigenschaften


  • Artikelnummer: 9783031206412
  • Medium: Buch
  • ISBN: 978-3-031-20641-2
  • Verlag: Springer Nature Switzerland
  • Erscheinungstermin: 02.05.2024
  • Sprache(n): Englisch
  • Auflage: 2023
  • Produktform: Kartoniert
  • Gewicht: 821 g
  • Seiten: 466
  • Format (B x H x T): 155 x 235 x 25 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Autoren

Chapter 1. Introduction.- Chapter 2. Neural networks for deep learning.- Chapter 3. Knowledge Encoding and Interpretation.- Chapter 4. Interpretation in Specific Deep Learning Architectures.- Chapter 5. Fuzzy Deep Learning.