Verkauf durch Sack Fachmedien

Terdik

Bilinear Stochastic Models and Related Problems of Nonlinear Time Series Analysis

A Frequency Domain Approach

Medium: Buch
ISBN: 978-0-387-98872-6
Verlag: Springer
Erscheinungstermin: 30.07.1999
Lieferfrist: bis zu 10 Tage

"Ninety percent of inspiration is perspiration. " [31] The Wiener approach to nonlinear stochastic systems [146] permits the representation of single-valued systems with memory for which a small per­ turbation of the input produces a small perturbation of the output. The Wiener functional series representation contains many transfer functions to describe entirely the input-output connections. Although, theoretically, these representations are elegant, in practice it is not feasible to estimate all the finite-order transfer functions (or the kernels) from a finite sam­ ple. One of the most important classes of stochastic systems, especially from a statistical point of view, is the case when all the transfer functions are determined by finitely many parameters. Therefore, one has to seek a finite-parameter nonlinear model which can adequately represent non­ linearity in a series. Among the special classes of nonlinear models that have been studied are the bilinear processes, which have found applica­ tions both in econometrics and control theory; see, for example, Granger and Andersen [43] and Ruberti, et al. [4]. These bilinear processes are de­ fined to be linear in both input and output only, when either the input or output are fixed. The bilinear model was introduced by Granger and Andersen [43] and Subba Rao [118], [119]. Terdik [126] gave the solution of xii a lower triangular bilinear model in terms of multiple Wiener-It(') integrals and gave a sufficient condition for the second order stationarity. An impor­ tant.


Produkteigenschaften


  • Artikelnummer: 9780387988726
  • Medium: Buch
  • ISBN: 978-0-387-98872-6
  • Verlag: Springer
  • Erscheinungstermin: 30.07.1999
  • Sprache(n): Englisch
  • Auflage: Softcover Nachdruck of the original 1. Auflage 1999
  • Serie: Lecture Notes in Statistics
  • Produktform: Kartoniert
  • Gewicht: 441 g
  • Seiten: 270
  • Format (B x H x T): 155 x 235 x 16 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Autoren

1 Foundations.- 1.1 Expectation of Nonlinear Functions of Gaussian Variables.- 1.2 Hermite Polynomials.- 1.3 Cumulants.- 1.4 Diagrams, and Moments and Cumulants for Gaussian Systems.- 1.5 Stationary processes and spectra.- 2 The Multiple Wiener-Itô Integral.- 2.1 Functions of Spaces $$ \overline {L_{\Phi }^{n}} $$ and $$ \widetilde{{L_{\Phi }^{n}}} $$.- 2.2 The multiple Wiener-Itô Integral of second order.- 2.3 The multiple Wiener-Itô integral of order n.- 2.4 Chaotic representation of stationary processes.- 3 Stationary Bilinear Models.- 3.1 Definition of bilinear models.- 3.2 Identification of a bilinear model with scalar states.- 3.3 Identification of bilinear processes, general case.- 3.4 Identification of multiple-bilinear models.- 3.5 State space realization.- 3.6 Some bilinear models of interest.- 3.7 Identification of GARCH(1,1) Model.- 4 Non-Gaussian Estimation.- 4.1 Estimating a parameter for non-Gaussian data.- 4.2 Consistency and asymptotic variance of the estimate.- 4.3 Asymptotic normality of the estimate.- 4.4 Asymptotic variance in the case of linear processes.- 5 Linearity Test.- 5.1 Quadratic predictor.- 5.2 The test statistics.- 5.3 Comments on computing the test statistics.- 5.4 Simulations and real data.- 6 Some Applications.- 6.1 Testing linearity.- 6.2 Bilinear fitting.- Appendix A Moments.- Appendix B Proofs for the Chapter Stationary Bilinear Models.- Appendix C Proofs for Section 3.6.1.- Appendix D Cumulants and Fourier Transforms for GARCH(1,1).- Appendix E Proofs for the Chapter Non-Gaussian Estimation.- E.0.1 Proof for Section 4.4.- Appendix F Proof for the Chapter Linearity Test.- References.