Verkauf durch Sack Fachmedien

Thiruvathukal / Lu / Kim

Low-Power Computer Vision

Improve the Efficiency of Artificial Intelligence

Medium: Buch
ISBN: 978-0-367-75528-7
Verlag: CRC Press
Erscheinungstermin: 04.10.2024
Lieferfrist: bis zu 10 Tage

Energy efficiency is critical for running computer vision on battery-powered systems, such as mobile phones or UAVs (unmanned aerial vehicles, or drones). This book collects the methods that have won the annual IEEE Low-Power Computer Vision Challenges since 2015. The winners share their solutions and provide insight on how to improve the efficiency of machine learning systems.


Produkteigenschaften


  • Artikelnummer: 9780367755287
  • Medium: Buch
  • ISBN: 978-0-367-75528-7
  • Verlag: CRC Press
  • Erscheinungstermin: 04.10.2024
  • Sprache(n): Englisch
  • Auflage: 1. Auflage 2024
  • Serie: Chapman & Hall/CRC Computer Vision
  • Produktform: Kartoniert
  • Gewicht: 608 g
  • Seiten: 438
  • Format (B x H x T): 156 x 234 x 23 mm
  • Ausgabetyp: Kein, Unbekannt

Themen


Autoren/Hrsg.

Herausgeber

Section I Introduction

Book Introduction

Yung-Hsiang Lu, George K. Thiruvathukal, Jaeyoun Kim, Yiran Chen, and Bo Chen

History of Low-Power Computer Vision Challenge

Yung-Hsiang Lu and Xiao Hu, Yiran Chen, Joe Spisak, Gaurav Aggarwal, Mike Zheng Shou, and George K. Thiruvathukal

Survey on Energy-Efficient Deep Neural Networks for Computer Vision

Abhinav Goel, Caleb Tung, Xiao Hu, Haobo Wang, and Yung-Hsiang Lu and George K. Thiruvathukal

Section II Competition Winners

Hardware design and software practices for efficient neural network inference

Yu Wang, Xuefei Ning, Shulin Zeng, Yi Kai, Kaiyuan Guo, and Hanbo Sun, Changcheng Tang, Tianyi Lu, Shuang Liang, and Tianchen Zhao

Progressive Automatic Design of Search Space for One-Shot Neural Architecture Search
Xin Xia, Xuefeng Xiao, and Xing Wang

Fast Adjustable Threshold For Uniform Neural Network Quantization
Alexander Goncharenko, Andrey Denisov, and Sergey Alyamkin

Power-efficient Neural Network Scheduling on Heterogeneous SoCs
Ying Wang, Xuyi Cai, and Xiandong Zhao

Efficient Neural Network Architectures
Han Cai and Song Han

Design Methodology for Low Power Image Recognition Systems
Soonhoi Ha, EunJin Jeong, Duseok Kang, Jangryul Kim, and Donghyun Kang

Guided Design for Efficient On-device Object Detection Model
Tao Sheng and Yang Liu

Section III Invited Articles

Quantizing Neural Networks

Marios Fournarakis, Markus Nagel, Rana Ali Amjad, Yelysei Bondarenko, Mart van Baalen, and Tijmen Blankevoort

A practical guide to designing efficient mobile architectures
Mark Sandler and Andrew Howard

A Survey of Quantization Methods for Efficient Neural Network Inference
Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael Mahoney, and Kurt Keutzer

Bibliography

Index