Recent years have witnessed an explosion in the volume and variety of data collected in all scientific disciplines and industrial settings. Such massive data sets present a number of challenges to researchers in statistics and machine learning. This book provides a self-contained introduction to the area of high-dimensional statistics, aimed at the first-year graduate level. It includes chapters that are focused on core methodology and theory - including tail bounds, concentration inequalities, uniform laws and empirical process, and random matrices - as well as chapters devoted to in-depth exploration of particular model classes - including sparse linear models, matrix models with rank constraints, graphical models, and various types of non-parametric models. With hundreds of worked examples and exercises, this text is intended both for courses and for self-study by graduate students and researchers in statistics, machine learning, and related fields who must understand, apply, and adapt modern statistical methods suited to large-scale data.
Produkteigenschaften
- Artikelnummer: 9781108498029
- Medium: Buch
- ISBN: 978-1-108-49802-9
- Verlag: Cambridge University Press
- Erscheinungstermin: 21.02.2019
- Sprache(n): Englisch
- Auflage: Erscheinungsjahr 2019
- Serie: Cambridge Series in Statistical and Probabilistic Mathematics
- Produktform: Gebunden
- Gewicht: 1257 g
- Seiten: 555
- Format (B x H x T): 183 x 260 x 35 mm
- Ausgabetyp: Kein, Unbekannt
Themen
- Technische Wissenschaften
- Sonstige Technologien | Angewandte Technik
- Signalverarbeitung, Bildverarbeitung, Scanning
- Wirtschaftswissenschaften
- Volkswirtschaftslehre
- Volkswirtschaftslehre Allgemein
- Wirtschaftsstatistik, Demographie
- Wirtschaftswissenschaften
- Volkswirtschaftslehre
- Volkswirtschaftslehre Allgemein
- Wirtschaftsstatistik, Demographie
- Mathematik | Informatik
- EDV | Informatik
- Informatik
- Künstliche Intelligenz
- Mustererkennung, Biometrik
- Technische Wissenschaften
- Sonstige Technologien | Angewandte Technik
- Signalverarbeitung, Bildverarbeitung, Scanning
- Interdisziplinäres
- Wissenschaften
- Wissenschaften: Forschung und Information
- Datenanalyse, Datenverarbeitung