Verkauf durch Sack Fachmedien

Xu / Li / Fu

Resource-Efficient Medical Image Analysis

First MICCAI Workshop, REMIA 2022, Singapore, September 22, 2022, Proceedings

Medium: Buch
ISBN: 978-3-031-16875-8
Verlag: Springer Nature Switzerland
Erscheinungstermin: 11.09.2022
Lieferfrist: bis zu 10 Tage

This book constitutes the refereed proceedings of the first MICCAI Workshop on Resource-Efficient Medical Image Analysis, REMIA 2022, held in conjunction with MICCAI 2022, in September 2022 as a hybrid event.

REMIA 2022 accepted 13 papers from the 19 submissions received. The workshop aims at creating a discussion on the issues for practical applications of medical imaging systems with data, label and hardware limitations.


Produkteigenschaften


  • Artikelnummer: 9783031168758
  • Medium: Buch
  • ISBN: 978-3-031-16875-8
  • Verlag: Springer Nature Switzerland
  • Erscheinungstermin: 11.09.2022
  • Sprache(n): Englisch
  • Auflage: 1. Auflage 2022
  • Serie: Lecture Notes in Computer Science
  • Produktform: Kartoniert
  • Gewicht: 236 g
  • Seiten: 137
  • Format (B x H x T): 155 x 235 x 9 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Herausgeber

Multi-Task Semi-Supervised Learning for Vascular Network.- Segmentation and Renal Cell Carcinoma Classification.- Self-supervised Antigen Detection Artificial Intelligence (SANDI).- RadTex: Learning Effcient Radiograph Representations from Text Reports.- Single Domain Generalization via Spontaneous Amplitude Spectrum Diversification.- Triple-View Feature Learning for Medical Image Segmentation.- Classification of 4D fMRI Images Using ML, Focusing on Computational and Memory Utilization Effciency.- An Effcient Defending Mechanism Against Image Attacking On Medical Image Segmentation Models.- Leverage Supervised and Self-supervised Pretrain Models for Pathological Survival Analysis via a Simple and Low-cost Joint Representation Tuning.- Pathological Image Contrastive Self-Supervised Learning.- Investigation of Training Multiple Instance Learning Networks with Instance Sampling.- Masked Video Modeling with Correlation-aware Contrastive Learning for Breast Cancer Diagnosis in Ultrasound.- A self-attentive meta-learning approach for image-based few-shot disease detection.- Facing Annotation Redundancy: OCT Layer Segmentation with Only 10 Annotated Pixels Per Layer.