Verkauf durch Sack Fachmedien

Yang

Nonlinear Waves in Integrable and Non-integrable Systems

Medium: Buch
ISBN: 978-0-89871-705-1
Verlag: Society for Industrial and Applied Mathematics
Erscheinungstermin: 02.12.2010
Lieferfrist: bis zu 10 Tage

Nonlinear Waves in Integrable and Non-integrable Systems presents cutting-edge developments in the theory and experimental study of nonlinear waves. Its comprehensive coverage of analytical and numerical methods for non-integrable systems is the first of its kind. The book also discusses in great depth a wide range of analytical methods for integrable equations and comprehensively describes efficient numerical methods for all major aspects of nonlinear wave computations. It contains a chapter on nonlinear waves in periodic media, where many novel phenomena due to bandgap guidance are revealed and thoroughly analyzed. It presents the latest experiments on nonlinear waves in optical systems and Bose–Einstein condensates, especially in periodic media. The book also contains a large number of simple and efficient MATLAB codes for various types of nonlinear wave computations, which readers can easily adapt to solve their own problems.


Produkteigenschaften


  • Artikelnummer: 9780898717051
  • Medium: Buch
  • ISBN: 978-0-89871-705-1
  • Verlag: Society for Industrial and Applied Mathematics
  • Erscheinungstermin: 02.12.2010
  • Sprache(n): Englisch
  • Auflage: Erscheinungsjahr 2010
  • Serie: Monographs on Mathematical Modeling and Computation
  • Produktform: Kartoniert
  • Gewicht: 780 g
  • Seiten: 454
  • Format (B x H x T): 174 x 247 x 22 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Autoren

Jianke Yang is Professor of Applied Mathematics at the University of Vermont. He is a member of the Society of Industrial and Applied Mathematics and the Optical Society of America.

List of figures; Preface; 1. Derivation of nonlinear wave equations; 2. Integrable theory for the nonlinear Schrödinger equation; 3. Theories for integrable equations with higher-order scattering operators; 4. Soliton perturbation theories and applications; 5. Theories for non-integrable equations; 6. Nonlinear wave phenomena in periodic media; 7. Numerical methods for nonlinear wave equations; Bibliography; Index.