Verkauf durch Sack Fachmedien

Yatsenko / Hritonenko

Applied Mathematical Modelling of Engineering Problems

Medium: Buch
ISBN: 978-1-4613-4815-3
Verlag: Springer US
Erscheinungstermin: 16.11.2012
Lieferfrist: bis zu 10 Tage

The subject of the book is the "know-how" of applied mathematical modelling: how to construct specific models and adjust them to a new engineering environment or more precise realistic assumptions; how to analyze models for the purpose of investigating real life phenomena; and how the models can extend our knowledge about a specific engineering process.

Two major sources of the book are the stock of classic models and the authors' wide experience in the field. The book provides a theoretical background to guide the development of practical models and their investigation. It considers general modelling techniques, explains basic underlying physical laws and shows how to transform them into a set of mathematical equations. The emphasis is placed on common features of the modelling process in various applications as well as on complications and generalizations of models.

The book covers a variety of applications: mechanical, acoustical, physical and electrical, water transportation and contamination processes; bioengineering and population control; production systems and technical equipment renovation. Mathematical tools include partial and ordinary differential equations, difference and integral equations, the calculus of variations, optimal control, bifurcation methods, and related subjects.


Produkteigenschaften


  • Artikelnummer: 9781461348153
  • Medium: Buch
  • ISBN: 978-1-4613-4815-3
  • Verlag: Springer US
  • Erscheinungstermin: 16.11.2012
  • Sprache(n): Englisch
  • Auflage: Softcover Nachdruck of the original 1. Auflage 2003
  • Serie: Applied Optimization
  • Produktform: Kartoniert
  • Gewicht: 476 g
  • Seiten: 286
  • Format (B x H x T): 155 x 235 x 17 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Autoren

Some Basic Models Of Physical Systems.- Models Of Continuum Mechanical Systems.- Variational Models and Structural Stability.- Integral Models Of Physical Systems.- Modelling in Bioengineering.- Modelling Of Technological Renovation In Production Systems.