Verkauf durch Sack Fachmedien

Young / Smith

Essentials of Statistical Inference

Medium: Buch
ISBN: 978-0-521-54866-3
Verlag: Cambridge University Press
Erscheinungstermin: 03.10.2014
Lieferfrist: bis zu 10 Tage

Aimed at advanced undergraduate and graduate students in mathematics and related disciplines, this book presents the concepts and results underlying the Bayesian, frequentist and Fisherian approaches, with particular emphasis on the contrasts between them. Contemporary computational ideas are explained, as well as basic mathematical theory. Written in a lucid and informal style, this concise text provides both basic material on the main approaches to inference, as well as more advanced material on modern developments in statistical theory, including: contemporary material on Bayesian computation, such as MCMC, higher-order likelihood theory, predictive inference, bootstrap methods and conditional inference. It contains numerous extended examples of the application of formal inference techniques to real data, as well as historical commentary on the development of the subject. Throughout, the text concentrates on concepts, rather than mathematical detail, while maintaining appropriate levels of formality. Each chapter ends with a set of accessible problems.


Produkteigenschaften


  • Artikelnummer: 9780521548663
  • Medium: Buch
  • ISBN: 978-0-521-54866-3
  • Verlag: Cambridge University Press
  • Erscheinungstermin: 03.10.2014
  • Sprache(n): Englisch
  • Auflage: Erscheinungsjahr 2014
  • Serie: Cambridge Series in Statistical and Probabilistic Mathematics
  • Produktform: Kartoniert
  • Gewicht: 415 g
  • Seiten: 236
  • Format (B x H x T): 170 x 244 x 13 mm
  • Ausgabetyp: Kein, Unbekannt
Autoren/Hrsg.

Autoren

G. A. Young is Professor of Statistics at Imperial College London.

R. L. Smith is Mark L. Reed Distinguished Professor of Statistics at the University of North Carolina, Chapel Hill.

1. Introduction
2. Decision theory
3. Bayesian methods
4. Hypothesis testing
5. Special models
6. Sufficiency and completeness
7. Two-sided tests and conditional inference
8. Likelihood theory
9. Higher-order theory
10. Predictive inference
11. Bootstrap methods.