Pattern recognition presents one of the most significant challenges for scientists and engineers, and many different approaches have been proposed. The aim of this book is to provide a self-contained account of probabilistic analysis of these approaches. The book includes a discussion of distance measures, nonparametric methods based on kernels or nearest neighbors, Vapnik-Chervonenkis theory, epsilon entropy, parametric classification, error estimation, free classifiers, and neural networks. Wherever possible, distribution-free properties and inequalities are derived. A substantial portion of the results or the analysis is new. Over 430 problems and exercises complement the material.
Produkteigenschaften
- Artikelnummer: 9781461268772
- Medium: Buch
- ISBN: 978-1-4612-6877-2
- Verlag: Springer
- Erscheinungstermin: 22.11.2013
- Sprache(n): Englisch
- Auflage: Softcover Nachdruck of the original 1. Auflage 1996
- Serie: Stochastic Modelling and Applied Probability
- Produktform: Kartoniert
- Gewicht: 984 g
- Seiten: 638
- Format (B x H x T): 155 x 235 x 36 mm
- Ausgabetyp: Kein, Unbekannt